プロフェッショナルProfessional-Data-Engineer出題範囲 &資格試験におけるリーダーオファー &無料ダウンロードProfessional-Data-Engineer: Google Certified Professional Data Engineer Exam
無料でクラウドストレージから最新のXhs1991 Professional-Data-Engineer PDFダンプをダウンロードする:https://drive.google.com/open?id=16I1i6pDziwFKS1FfIvQ4K1y7Pt2FBrr8
Google高品質で、高い合格率とヒット率を高めることができるProfessional-Data-EngineerのGoogle Certified Professional Data Engineer Exam試験トレントを提供します。 当社の合格率は99%であるため、当社の製品を購入し、Professional-Data-Engineer試験の教材によってもたらされるメリットを享受することができます。 当社の製品は効率的で、短時間でGoogle Certified Professional Data Engineer Examガイド急流を習得し、エネルギーを節約するのに役立ちます。 当社が提供する製品は専門家によって編集され、Xhs1991深い経験を後押しする専門家によって承認されています。 シラバスの変更および理論と実践の最新の開発状況に応じて改訂および更新されます。
この時代の変革とともに、私たちは努力して積極的に進歩すべきです。我々の全面的なProfessional-Data-Engineer問題集は数回の更新からもらった製品ですから、試験の合格を保証することができます。我々の提供した一番新しくて全面的なProfessional-Data-Engineer問題集はあなたのすべての需要を満たすことができると信じています。
>> Professional-Data-Engineer出題範囲 <<
Professional-Data-Engineer日本語サンプル & Professional-Data-Engineer関連問題資料
当社Xhs1991のProfessional-Data-Engineer試験資料は、約98%〜100%の高い合格率と、高い合格率の両方を高めて、テストに合格するのがほとんど困難ではないことを示しています。 Professional-Data-Engineer試験シミュレーションは、認定された専門家の勤勉な労働者からのリソースと実際の試験に基づいて編集され、過去数年の試験用紙を授与するため、非常に実用的です。 Professional-Data-Engineer試験問題の質問と回答の内容は洗練されており、最も重要な情報に焦点を当てています。クライアントが実際のProfessional-Data-Engineer試験の雰囲気とペースに慣れるために、試験を刺激する機能を提供します。
試験は、複数選択肢とシナリオに基づく問題からなり、GCPデータエンジニアリングサービスの理解とデータエンジニアリングのベストプラクティスを試験対象者に問います。受験者は2時間30分の時間を持って試験を受けることができます。試験は英語、日本語、スペイン語、ポルトガル語で利用可能です。
Google Professional-Data-Engineer認定は、データ処理の専門家がGoogle Cloudプラットフォームでデータ処理システムの設計と構築の知識とスキルを実証する優れた方法です。この認定は、個人が自分のキャリアを前進させ、データエンジニアリングの分野で新しい機会を開くのに役立ちます。
Google Professional-Data-Engineer認定を達成することは重要な成果であり、専門家がデータエンジニアリングの分野でキャリアを前進させるのに役立ちます。この認定は、候補者がGoogle Cloudプラットフォームを使用して複雑なデータ処理システムを設計および管理するために必要なスキルと知識を持っていることを雇用主とクライアントに示しています。この認定は、候補者がデータエンジニアリングの最新のトレンドとベストプラクティスを最新の状態に保つのに役立つ認定専門家やその他のリソースのコミュニティへのアクセスも提供します。
Google Certified Professional Data Engineer Exam 認定 Professional-Data-Engineer 試験問題 (Q365-Q370):
質問 # 365
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?
正解:A
解説:
Topic 2, MJTelco Case Study
Company Overview
MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.
Company Background
Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.
Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.
Solution Concept
MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:
Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.
MJTelco will also use three separate operating environments - development/test, staging, and production - to meet the needs of running experiments, deploying new features, and serving production customers.
Business Requirements
Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
Provide reliable and timely access to data for analysis from distributed research workers
Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.
Technical Requirements
Ensure secure and efficient transport and storage of telemetry data
Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day
Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.
CEO Statement
Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.
CTO Statement
Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.
CFO Statement
The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.
質問 # 366
Your infrastructure includes a set of YouTube channels. You have been tasked with creating a process for sending the YouTube channel data to Google Cloud for analysis. You want to design a solution that allows your world-wide marketing teams to perform ANSI SQL and other types of analysis on up-to-date YouTube channels log dat a. How should you set up the log data transfer into Google Cloud?
正解:D
解説:
storage bucket as a final destination.
質問 # 367
Suppose you have a dataset of images that are each labeled as to whether or not they contain a human face. To create a neural network that recognizes human faces in images using this labeled dataset, what approach would likely be the most effective?
正解:A
解説:
Traditional machine learning relies on shallow nets, composed of one input and one output layer, and at most one hidden layer in between. More than three layers (including input and output) qualifies as "deep" learning. So deep is a strictly defined, technical term that means more than one hidden layer.
In deep-learning networks, each layer of nodes trains on a distinct set of features based on the previous layer's output. The further you advance into the neural net, the more complex the features your nodes can recognize, since they aggregate and recombine features from the previous layer.
A neural network with only one hidden layer would be unable to automatically recognize high-level features of faces, such as eyes, because it wouldn't be able to "build" these features using previous hidden layers that detect low-level features, such as lines. Feature engineering is difficult to perform on raw image data.
K-means Clustering is an unsupervised learning method used to categorize unlabeled data.
Reference: https://deeplearning4j.org/neuralnet-overview
質問 # 368
You are designing storage for very large text files for a data pipeline on Google Cloud. You want to support ANSI SQL queries. You also want to support compression and parallel load from the input locations using Google recommended practices. What should you do?
正解:A
質問 # 369
You have a data pipeline that writes data to Cloud Bigtable using well-designed row keys. You want to monitor your pipeline to determine when to increase the size of you Cloud Bigtable cluster. Which two actions can you take to accomplish this? (Choose two.)
正解:B、D
質問 # 370
......
GoogleのProfessional-Data-Engineer認定試験を受けてProfessional-Data-Engineer認証資格を取得したいですか。Xhs1991はあなたの成功を保証することができます。もちろん、試験の準備をするときに試験に関連する知識を学ぶのは必要です。なお大切なのは、自分に相応しい効率的なツールを選択することです。Xhs1991のProfessional-Data-Engineer問題集はあなたに合う最善の勉強法です。この高品質の問題集は信じられないほどの結果を見せることができます。自分が試験に合格できない心配があれば、はやくXhs1991のウェブサイトをクリックしてもっと多くの情報を読んでください。
Professional-Data-Engineer日本語サンプル: https://www.xhs1991.com/Professional-Data-Engineer.html
BONUS!!! Xhs1991 Professional-Data-Engineerダンプの一部を無料でダウンロード:https://drive.google.com/open?id=16I1i6pDziwFKS1FfIvQ4K1y7Pt2FBrr8